Gene set enrichment analysis made simple.
نویسندگان
چکیده
Among the many applications of microarray technology, one of the most popular is the identification of genes that are differentially expressed in two conditions. A common statistical approach is to quantify the interest of each gene with a p-value, adjust these p-values for multiple comparisons, choose an appropriate cut-off, and create a list of candidate genes. This approach has been criticised for ignoring biological knowledge regarding how genes work together. Recently a series of methods, that do incorporate biological knowledge, have been proposed. However, the most popular method, gene set enrichment analysis (GSEA), seems overly complicated. Furthermore, GSEA is based on a statistical test known for its lack of sensitivity. In this article we compare the performance of a simple alternative to GSEA. We find that this simple solution clearly outperforms GSEA. We demonstrate this with eight different microarray datasets.
منابع مشابه
Model-based gene set analysis for Bioconductor
UNLABELLED Gene Ontology and other forms of gene-category analysis play a major role in the evaluation of high-throughput experiments in molecular biology. Single-category enrichment analysis procedures such as Fisher's exact test tend to flag large numbers of redundant categories as significant, which can complicate interpretation. We have recently developed an approach called model-based gene...
متن کاملRandom-set Methods Identify Distinct Aspects of the Enrichment Signal in Gene-set Analysis By
A prespecified set of genes may be enriched, to varying degrees, for genes that have altered expression levels relative to two or more states of a cell. Knowing the enrichment of gene sets defined by functional categories, such as gene ontology (GO) annotations, is valuable for analyzing the biological signals in microarray expression data. A common approach to measuring enrichment is by cross-...
متن کاملConceptGen: a gene set enrichment and gene set relation mapping tool
MOTIVATION The elucidation of biological concepts enriched with differentially expressed genes has become an integral part of the analysis and interpretation of genomic data. Of additional importance is the ability to explore networks of relationships among previously defined biological concepts from diverse information sources, and to explore results visually from multiple perspectives. Accomp...
متن کاملCancer Pathway Network Analysis Using Cellular Automata
Identification of cancer pathways is the central goal in the cancer gene expression data analysis. Data mining refers to the process analyzing huge data in order to find useful pattern. Data classification is the process of identifying common properties among a set of objects and grouping them into different classes. A cellular automaton is a discrete, dynamical system with simple uniformly int...
متن کاملEnrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation
BACKGROUND Gene-set enrichment analysis is a useful technique to help functionally characterize large gene lists, such as the results of gene expression experiments. This technique finds functionally coherent gene-sets, such as pathways, that are statistically over-represented in a given gene list. Ideally, the number of resulting sets is smaller than the number of genes in the list, thus simpl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistical methods in medical research
دوره 18 6 شماره
صفحات -
تاریخ انتشار 2009